Evidence for Coupling of the Carbon and Phosphorus Biogeochemical Cycles in Freshwater Microbial Communities
نویسنده
چکیده
Considerable attention has been given to the roles of the carbon and phosphate cycles in aquatic environments, but less attention has been given to an experimental analysis of the coupling of the C and P cycles in freshwater and marine ecosystems. Using laboratory microcosm experiments, prepared with natural pond-water microbial communities, evidence is presented for the coupling of dissolved organic C with microbial production of alkaline phosphatase driving the phosphorus cycle in freshwater microbial communities. The effects of glucose C-supplementation inmicrocosmmicrobial communities (including bacteria and heterotrophic nanoflagellates) on gains in microbial C-content and alkaline phosphatase activity (APA) were estimated in relation to control microcosms without C-supplementation. The C-supplementation increased total microbial APA (pmol min−1 μg−1 bacterial C) in the C-supplemented treatment (6.5 ± 0.6) compared to the non-supplemented cultures (5.1 ± 1.7). Microbial-bound APA in the C-supplemented treatment was particularly enhanced (4.4 ± 0.9) compared to control cultures (1.3 ± 0.8), but the amount of free (soluble) APA in the aquatic phase was less compared to the controls (n= 5, p< 0.001). Alkaline phosphatase activity was highly correlated (r = 0.97) with bacterial densities in the C-supplemented cultures, further supporting the hypothesis that C-supplementation can increase phosphorus remineralization through elevated production of microbial alkaline phosphatase. This laboratory-based, experimental study suggests that additional research on the coupling of the C and P cycles in freshwater and marine environments may yield productive insights into the finer details of the roles of these two biogeochemical cycles in aquatic microbial community dynamics.
منابع مشابه
Beyond carbon and nitrogen: how the microbial energy economy couples elemental cycles in diverse ecosystems
www.frontiersinecology.org © The Ecological Society of America A organisms have to make a living by harnessing energy, collecting nutrients, and expelling waste. The joining together, or coupling, of elemental cycles occurs when elements required for biosynthesis are assimilated into microbial, plant, and animal biomass, and again when that biomass is decomposed; in both cases, elements cycle i...
متن کاملWarming alters coupled carbon and nutrient cycles in experimental streams.
Although much effort has been devoted to quantifying how warming alters carbon cycling across diverse ecosystems, less is known about how these changes are linked to the cycling of bioavailable nitrogen and phosphorus. In freshwater ecosystems, benthic biofilms (i.e. thin films of algae, bacteria, fungi, and detrital matter) act as biogeochemical hotspots by controlling important fluxes of ener...
متن کاملMicrobial processes regulating carbon cycling in subtropical wetlands
Wetlands host complex microbial communities including bacteria, fungi, protozoa and viruses. The size and diversity of microbial communities are related directly to the quality and quantity of the resources (i.e., nutrients, energy sources) available in the system. Microbial biomass and activity is highest in habitats where these resources are concentrated, including periphyton mats, plant detr...
متن کاملThe impact of grassland management on biogeochemical cycles involving carbon, nitrogen and phosphorus
Grassland introduction into intensively managed agricultural landscapes may enhance soil organic matter (SOM) content and ecosystem services. However, the magnitude of this effect depends on grassland management practices, and their influence on the soil system. The aim of this paper is to highlight these impacts and their consequences for SOM dynamics and element cycling. We focused in particu...
متن کاملMicrobial mediation of carbon-cycle feedbacks to climate warming
Understanding the mechanisms of biospheric feedbacks to climate change is critical to project future climate warming1–3. Although microorganisms catalyse most biosphere processes related to fluxes of greenhouse gases, little is known about the microbial role in regulating future climate change4. Integrated metagenomic and functional analyses of a long-term warming experiment in a grassland ecos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018